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We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for 
England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams 
into a single coherent modeling framework, allowing transmission and severity to be disentangled from features 
of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduc-
tion number (Rteff) below 1 consistently; if introduced 1 week earlier, it could have reduced deaths in the first wave 
from an estimated 48,600 to 25,600 [95% credible interval (Crl): 15,900 to 38,400]. The infection fatality ratio de-
creased from 1.00% (95% Crl: 0.85 to 1.21%) to 0.79% (95% Crl: 0.63 to 0.99%), suggesting improved clinical care. 
The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95% Crl: 14.7 to 35.2%) than 
those residing in the community (7.9%, 95% Crl: 5.9 to 10.3%). On 2 December 2020, England was still far from 
herd immunity, with regional cumulative infection incidence between 7.6% (95% Crl: 5.4 to 10.2%) and 22.3% 
(95% Cr1: 19.4 to 25.4%) of the population. Therefore, any vaccination campaign will need to achieve high cover-
age and a high degree of protection in vaccinated individuals to allow nonpharmaceutical interventions to be 
lifted without a resurgence of transmission. 

INTRODUCTION 
England is among the countries worst affected by the global pan-
demic of coronavirus disease 2019 (COVID-19), caused by the 
novel Betacoronavirus severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2). More than 66,000 deaths are reported to have oc-
curred by 2 December 2020 in England or 117 deaths per 100,000 
people (1). The impact of the epidemic has varied across the country, 
with regional epidemics differing in their severity and timing. A key 
feature in all regions is the burden suffered by older adults living in 
care homes, where mortality has been high. 

We used a mathematical model of SARS-CoV-2 transmission to 
reproduce the first two waves of the epidemic across England's seven 
National Health Service (NHS) regions and assess the impact of 
interventions implemented by the U.K. government. We analyzed 
the epidemic from the importation of SARS-CoV-2 into each region 
in 2 December 2020, encompassing the first national lockdown from 
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March to May 2020, with the interventions implemented as COVID-19 
deaths increased again in the autumn, and the second national lock-
down in November. 

We developed an age-structured stochastic transmission model 
of SARS-CoV-2, representing care homes, hospital clinical pathways, 
and the wider community. We used a Bayesian evidence synthesis 
approach to estimate model parameters and to reconstruct regional 
epidemics using data from daily recorded deaths, polymerase chain 
reaction (PCR) testing, hospital admissions, hospital bed occupancy, 
individual patient outcomes, contact surveys, and serological surveys. 
This approach, based on integrating multiple data streams into a 
single coherent modeling framework, ensured robust epidemiological 
estimates where characteristics of transmission and severity of 
SARS-CoV-2 could be disentangled from features of the surveillance 
system. We evaluated temporal changes in transmission as new con-
trol measures were implemented and then relaxed, and population 
immunity accrued. Inclusion of serological data (accounting for 
seroreversion) allowed us to robustly estimate region- and age-specific 
disease severity, to compare severity in care home residents to elderly 
individuals in the community, and to estimate the total epidemic 
size by calculating the proportion of individuals infected over time 
in each region. Last, we examined counterfactual epidemic scenarios, 
varying the date and duration of the first national lockdown and the 
effectiveness of restricting care home visits, to quantify the resulting 
impact on mortality. 

Our analysis, which integrates multiple data sources and para-
metrically accounts for their biases, provides a balanced overview of 
transmission, hospitalization, and mortality patterns of SARS-CoV-2 in 
the first and second waves (up to 2 December) in all regions of 
England. Our results provide crucial insights for controlling the 
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epidemic in the future, emphasizing the importance of acting fast to 
save lives. 

RESULTS 
Epidemic trajectory 
We used estimates of clinical progression to parameterize a stochastic 
compartmental Susceptible-Exposed-Infectious-Recovered (SEIR)-
like transmission model incorporating care homes and hospital-
ization pathways. Incorporating these estimates into our evidence 
synthesis approach, we inferred the COVID-19 epidemic start date 
(assumed as the date when 30 asymptomatic infectious individuals 
were reached) in each NHS England region (Fig. 1A) and then re-
constructed epidemic trajectories for hospitalizations (fig. S1) and 
deaths in care homes and hospitals (Fig. 1, B to H). Noticeably, through-
out England, deaths in care homes peaked, on average, 13 days later 
than hospital deaths (Fig. 1, B to H). 

We estimated the basic reproduction number Ro (defined as the 
expected number of onward infections from an infectious individual 
in a fully susceptible population) to be 2.8 [95% credible interval 
(CrI): 2.5 to 3.3] nationally. Figure 1I shows how the effective repro-
duction number Rreff (the average number of secondary cases gener-
ated by an individual infected at time t) changed in each region over 
time in relation to government control measures and accrual of 
population immunity. 

The first COVID- 19 death in England occurred on 5 March 2020 
(2). Seven days later, in response to the growing epidemic, the govern-
ment began to introduce control measures, initially requiring indi-
viduals with a dry persistent cough or fever to self-isolate (3). On 
23 March, this escalated to a full national lockdown (3). Irrespective 
of initial differences, the degree of transmission during lockdown 
was similar across all regions (Fig. 1I), consistent with mobility data 
showing that movement during lockdown reduced to a consistent 
level nationally (4). 
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Fig. 1. Trajectory of the England COVID-19 epidemic. (A) Inferred epidemic start date in each NHS England region. (B to H) Model fit to reported daily deaths from 

COVID-19 in care homes, hospitals, and in the community (that is, neither in a hospital nor a care home) for each NHS England region. Points show the daily data (see 

section S1.1.2 for details of data sources) (1). Solid lines show the median posterior, and the shaded area shows the 95% Crl. (I) Mean estimated effective reproduction 
number within the general community (excluding care homes) in each region from March to December 2020. Vertical lines and labels represent dates of key policy changes, 
defining the breaking points of the underlying piecewise linear transmission rate. Dashed horizontal line depicts a reproduction number (R0) of 1. 
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We estimated that the epidemic in London and the South East 
began about 2 weeks before the rest of the country (Fig. 1A), mean-
ing that the lockdown occurred at a later stage of the epidemic in 
those areas. London experienced an estimated mortality of 96.3 
(95% CrI: 84.7 to 108.4) per 100,000 during the first wave, com-
pared with the estimated national average of 86.4 (95% CrI: 75.8 to 
99.1), despite having a younger population and a smaller estimated care 
home population than other regions (294 versus 603 per 100,000 
nationally) (5). 

The first lockdown in England continued until 11 May 2020, when 
people unable to work remotely were permitted to resume their 
jobs. Over the summer, restrictions were successively eased, with 
nonessential shops, pubs, and restaurants opening, followed by the 
government's "Eat Out to Help Out" restaurant subsidy scheme in 
August (6). This led to a steady increase in transmission, with Rreff 

estimated to rise above 1 in all regions by mid-August (Fig. 1I). 
In common with other European countries, a key feature of the 

first epidemic wave in England was the high death toll within care 
homes, which accounted for an estimated 28% of COVID-19 deaths 
as of 1 August 2020. Although community transmission rates fell 
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during lockdown, our model suggested that transmission within care 
homes continued to rise, with infection risk peaking in care home 
residents between 31 March in London and 20 April in the East of 
England (Fig. 2A). 

Increasing PCR test positivity marked the beginning of a second 
epidemic wave (Fig. 2, B to H, and fig. S6). The accompanying in-
troduction of nonpharmaceutical interventions (NPIs) began with 
the "rule of six" (limiting social gatherings to six persons maximum) 
on 14 September (7), followed by the localized tiered restrictions on 
14 October (8). These measures limited transmission in most regions, 
but our model suggests that they were insufficient to reduce Rreff 

below 1 (Fig. 1I). Consequently, on 31 October, the government an-
nounced a second national lockdown, which lasted from 5 November 
to 1 December (9). 

Restrictions during the second lockdown were less stringent than 
the first, with schools and some workplaces remaining open. This 
was reflected in Rreff estimates of 0.88 (95% CrI: 0.82 to 0.95) 
on 18 November 2020, the midpoint of the second lockdown, com-
pared to Rreff = 0.68 (95% CrI: 0.65 to 0.72) on 16 April 2020, the 
midpoint of the first lockdown. We estimated that, without the 
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Fig. 2. Infection incidence and case positivity over time. (A) Inferred daily SARS-CoV-2 infections in England care home residents (excluding care home workers; right 

axis) and the wider community (left axis). (B to H) Comparison of modeled (shaded bands) and observed (solid line) proportion of PCR tests that were positive under 

pillar-2 testing (community swab testing for symptomatic individuals) in >25-year-olds. Shaded bands depict 95% Crl, 50%Cr1, and median model outputs. 
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population immunity accrued during the first wave, contact rates 
during the second lockdown would have resulted in a reproduction 
number of Rt = 1.05 (95% CrI: 0.97 to 1.14). Hence, population 
immunity helped to reduce transmission below the critical thresh-
old of Rre = 1. 

Severity and hospitalization 
COVID-19 manifests a broad spectrum of severity, from asymp-
tomatic infection to life-threatening illness requiring intensive care. 
We estimated age patterns of clinical progression in people admitted 
to hospital using individual-level data from 17,702 patients admitted 
between 18 March and 31 May 2020 (inclusive) in the COVID-19 
Hospitalisation in England Surveillance System [CHESS; (10)]. We 
derived estimates of the time spent in each stage of the hospital 
pathway [including general wards, intensive care unit (ICU), and 
post-ICU stepdown care], as well as age-stratified probabilities of 
progression through that pathway (Fig. 3, A to E, and fig. S2). 
Accounting for differing lengths of stays given different outcomes, 
there were marked differences in the average length of ICU stay for 
those who died in the ICU, those who later died in stepdown care, 
and those who were discharged after stepdown care (Fig. 3F). 
Among patients over 65 years of age, we found that the probability 
of admission to ICU decreased with increasing age. Thus, it is possible 

Patient progression in hospital 

that older and more severely infected patients were directed to care on 
a general ward rather than admitted to ICU where the benefits of 
ventilation and the corresponding prognosis may not be better than 
with oxygen therapy in a general ward (11). 

We used estimates of clinical progression to parameterize the 
transmission model, enabling us to infer temporal and regional 
differences in disease severity informed by local demography, 
observed daily hospital admissions, bed occupancy, and deaths. We 
measured the severity of disease by the infection fatality ratio (IFR) 
and the infection hospitalization ratio (IHR). The severity of disease 
increased with age in all regions with the steepest increase above 
65 years (Fig. 4, A to C), in line with observations worldwide (5). 
Regional estimates of age-aggregated disease severity depended on 
the population age distribution, which was similar in most regions 
of the country, except London, where the median age was 34.6 years 
(versus 39.5 years nationally). At the start of the first wave, London 
experienced an estimated IFR of 0.63% (95% CrI: 0.52 to 0.75%) 
compared to the estimated national average of 1.00% (95% CrI: 0.85 
to 1.21%). The IHR in London was 1.94% (95% CrI: 1.68 to 2.25%) 
compared to the national average of 2.55% (95% CrI: 2.17 to 3.04%) 
(Fig. 4, D and E). Regional variation in the population age distribu-
tion did not fully account for differences in severity, with London 
still experiencing lower mortality when stratified by age (Fig. 4, A and B). 
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Fig. 3. Age-dependent probabilities of progression through hospital pathways. (A) Probability of admission to ICU. (B) Probability of death in a general hospital 

ward. (C) Probability of death in an ICU. (D) Probability of death in hospital during stepdown care. (E) Probability of death through all hospital pathways [obtained by 
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A Regional IHR by age B Regional IFR by age C England severity by age and in care home residents 

40 0 EE 0 NW 10 1 

■ MID ■ SE ■ Infection hospitalization ratio (IHR) e
y
^ 

❑ LON 0 SW g

•

0.1 ■ Infection fatality ratio (IFR) ■ 
30 0 NE 

///)f 0.01 
6 0 

C 
20 0 x0.001 

4 

o 
0 

0.0001 
10 

2 0.00001 

0 0 - 
F, 

0.000001 
Care 

0 20 40 60 80+ 0 20 40 60 80+ 0 10 20 30 40 50 60 70 80+ home 
Age Age Age residents 

D Regional IHR E England age-aggregated IFR 
2.0 

EE 

MID 1.5 

LON 

NE ~% 01.0 

+~ 
N W [CI 

0.5 l
SE [*3 LON 

+ 
LON 

SW ]
0.0 

0 1 2 3 4 5 Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
(%) 

Fig. 4. Estimated relative severity of disease by age group and region. (A and B) Variation in (A) the median inferred infection fatality ratio (IFR) and (B) infection 
hospitalization ratio (IHR) by age group in each region. Ages 80+ were modeled as a single risk group; care home residents were not included. (C) Estimated England IFR 
and IHR by age group and in care home residents (estimate excludes care home workers). National severity estimates are produced by aggregating regional estimates on 
the basis of infection incidence. (D) Regional estimated IHR, aggregated over age and risk group by infection incidence. Plots in (A) to (D) use parameter estimates and 
incidence weightings calculated as of 1 December 2020. (E) Estimated England IFR over time; colored dots show regional estimates of IFR at the start of the epidemic and 
on 1 December 2020 [clusters each correspond to one time point, London (LON)]. In (C) to (E), shaded bands depict 95%Cr1 and interquartile ranges, and points depict 
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The oldest age group (80+) in London had an estimated IFR of 4.7% 
(95% CrI: 3.6 to 6.2%) compared to 10.7% (95% CrI: 8.2 to 13.8%) 
in the North East and Yorkshire. 

We estimated temporal trends in the overall IFR for England by 
weighting regional estimates by incidence. At the start of the first 
wave, the estimated national IFR was 1.00% (95% CrI: 0.85 to 1.21%) 
(Fig. 4E), consistent with earlier reports from serology data alone 
(12). The national IFR initially appeared to increase as transmission 
widened from London to regions with older populations and greater 
disease severity. Over the first wave, the proportion of hospital ad-
missions resulting in death decreased, likely due to improvements 
in clinical management and alleviation of capacity constraints (13), 
leading to an estimated national IFR of 0.79% (95% CrI: 0.63 to 
0.99%) by the end of the first wave. The magnitude of the relative 
reduction in IFR over time varied between regions, from an esti-
mated 29.8% (95% CrI: 15.5 to 42.4%) in the North West to 44.6% 
(95% CrI: 28.4 to 57.7%) in East of England. 

The inferred IFR was greater among care home residents (23.3%, 
95% CrI: 14.7 to 35.2%) than in the 80+ in the community (7.9%, 
95% CrI: 5.9 to 10.3%; Fig. 4C). Many care home residents did not 
transfer into hospital and instead died in the facilities where they 
lived; so conversely, the inferred IHR was lower in care home resi-
dents (18.8%, 95% CrI: 4.9 to 34.6%) than in those aged 80+ in the 
community (30.7%, 95% CrI: 24.1 to 38.9%). We present national 

estimates of severity at the end of the second wave, stratified by age 
and care home residency, in table S9. 

Epidemic size 
Data from repeated serological surveys of blood donors aged 17 to 65 
informed our estimation of the total regional 2020 epidemic size 
(Fig. 5, A to G), accounting for the imperfect sensitivity and specificity of 
serological tests alongside seroreversion (14). Seropositivity notably 
declined after the first wave in some regions (Fig. 5, A to G). This 
reflected not only seroreversion (15) but also likely temporal trends 
in the composition of the surveyed population. Lockdown restrictions 
made attending blood donation centers difficult for all except key 
workers, who were more likely to have been infected (16) and may 
therefore be overrepresented in the sample of blood donors during the 
two lockdowns. The decline of seropositivity is modeled inde-
pendently of population immunity, which was assumed not to wane 
over the study period. 

The estimated cumulative proportion of the population ever in-
fected with SARS-CoV-2 ranged from 7.6% (95% CrI: 5.4 to 10.2%) 
in the South West to 22.3% (95% CrI:19.4 to 25.4%) in London (Fig. 5H). 
The increase in seropositivity lagged cumulative infections by 2 weeks, 
reflecting the time from infection to seroconversion. 

The estimated proportion of care home residents ever infected 
with SARS-CoV-2 was 29.8% (95% CrI: 17.6 to 44.0%), much higher 
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Fig. 5. Cumulative COVID-19 incidence and seropositivity by region. (A to G) Comparison of the estimated proportion of the population testing seropositive in 2020 
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than the 6.1% (95% CrI: 5.0 to 7.2%) estimated in >80-year-olds 
living in the community. This difference was consistent across most 
regions (Fig. 5H) where regional differences in the estimated care 
home attack rates mirrored the patterns estimated in the general 
community, with regions with larger community epidemics also ex-
periencing larger care home epidemics (Fig. 5, I and J). In the East 
of England and the South East, this pattern was decoupled, likely 
due to slight inconsistencies in how COVID-19 cases were reported 
between different datasets. 

Impact of NPIs 
We explored counterfactual intervention scenarios and examined 
the potential impact on mortality of initiating the first national 
lockdown 1 week earlier or later, ending that lockdown 2 weeks ear-
lier or later, and with 50% more or less restricted care home visits 
throughout the epidemic (Fig. 6). We found that the timing of the 
initial national lockdown was crucial in determining the eventual 
epidemic size in England. We estimated that locking down a week 
earlier could have reduced the first wave death toll (up to 1 July 2020) 
from an estimated 48,600 to 25,600 (95% CrI: 15,900 to 38,400), 
whereas delaying lockdown by a week would have increased the 
number of deaths to 132,800 (95% CrI: 91,900 to 180,700) (Fig. 6A). 
Note that an earlier lockdown could also result in a larger second 
wave, which could then be avoided by moving autumn control mea-
sures earlier. The estimated impact of such an approach varied by 

region, with regions with less established epidemics at the time 
of the first lockdown more sensitive to the timing of the inter-
vention (fig. S3, A and B). Conversely, we estimated that locking 
down a week later may have increased deaths, with large variability 
by region, from 117% in London to 248% in the North East and 
Yorkshire but with very large uncertainty (fig. S3B). Initiating a 
lockdown to interrupt the exponential growth phase of an epidemic 
has a much greater impact on reducing total mortality than ex-
tending an existing lockdown. Because of this asymmetry, we esti-
mated that relaxing the lockdown measures 2 weeks earlier could 
have increased deaths by 9400 (95% CrI: —6300 to 26,800) before 
2 December. Conversely, relaxing measures later could have pre-
vented 8300 (95% CrI: 1100 to 14,100) deaths before 2 December 
(Fig. 6B). 

We also explored counterfactual scenarios varying the extent of 
visit restrictions in care homes and estimated that reducing contact 
between the general population and care home residents by 50% 
would not have markedly affected care home deaths. The fits to care 
home deaths have lower and slightly later peaks compared with 
the data (Fig. 6C). This may be due to the different transmission 
dynamics in care homes at this time of the epidemics with, for ex-
ample, some NHS patients being discharged to care homes without 
prior testing. We estimated that deaths could have decreased by up 
to 30% or increased by up to 24% compared with the median fitted 
simulations (Fig. 6C). 

Knock etal., Sc!. Trans!. Med. 13, eabg4262 (2021) 14 July 2021 6of11 

INQ000212077_0006 



SCIENCE TRANSLATIONAL MEDICINE I RESEARCH ARTICLE 

A Lockdown 1 week earlier 
0 0 
o Actual o 
N ~ V 

t 
Alternative

mo Ij  ~o 
i i 

i 1 
0 ] 

0 0 

Mar May Jul Sep Nov 

Lockdown 1 week later 

B Relax lockdown 2 weeks later C 50% reduced care home visits 
0 

Alternative w v 
I L 

m 
Actual

,I I 

E
I I 1 

N 

I I - ❑ 0 

Mar May Jul Sep Nov 

Relax lockdown 2 weeks earlier 

■ Fitted 
ash ■ Counterfactual 
w 

0 8 

8 \_ ' 
Mar May Jul Sep Nov 

50% increased care home visits 

o Alternative o Actual

Alternative 
O Actual , t I 

mo mo " o'n 
N N TM > 

❑ ❑ 
' 

U 
I T 

I ' @ 

Mar May Jul Sep Nov Mar May Jul Sep Nov Mar May Jul Sep Nov 

Fig. 6. Counterfactual analysis of the impact on mortality aggregated across NHS England regions. We estimated the impact of (A) initiating lockdown 1 week 

earlier/later, (B) relaxing lockdown 2 weeks earlier/later, and (C) in response to 50% more/less restricted care home visits from March to November. (A) and (B) present 

counterfactual outcomes for daily deaths in England but have different y-axis scales to better highlight differences between the observed data and each alternative 

lockdown scenario. In all panels, gray dots depict data [see section Si .1.2 for details of data sources (1)]. Gray and green solid lines show the posterior median for thefitted 

and counterfactual model, respectively, and shaded bands depict the corresponding 95% Crl and interquartile ranges. Vertical dashed lines indicate the timings of the 

actual and alternative (used in the counterfactual analysis) interventions, respectively. Figure S3 presents a regional breakdown of this figure. 

DISCUSSION 
We present a detailed overview of SARS-CoV-2 transmission, 
hospitalization, mortality, and intervention impact in the first two 
epidemic waves across all regions of England between March and 
December 2020. We successfully reproduced the transmission 
dynamics of the two epidemic waves, in terms of cases, PCR preva-
lence, seroprevalence, hospitalized cases (general wards and ICU), 
and deaths in hospitals and in care homes. 

We estimated that intense transmission was occurring in care homes 
even during the first national lockdown when Rreff in the community 
was well below 1 in all regions (17-19). Combined with our counter-
factual analysis of restricting visits, this suggests that reducing 
infections in care home residents is challenging. This highlights 
the difficulty of protecting care home residents from COVID-19: 
Because of the necessarily close contact between staff and residents 
within a care home, once an outbreak has begun, it is very difficult 
to reduce transmission, which overrides any impact of reducing the 
number of introductions (20, 21). The disproportionately high 
burden of COVID-19 mortality in care homes has been observed in 
many high-income countries (22, 23), with an estimated IFR be-
tween 20 and 40% among care home residents in France assuming 
that individuals are 3.8 to 6.0 times more frail than the general 
population (24). Our results about transmission in care homes are 
mitigated by the difficulty of reproducing the dynamics of mortality 
in care homes in some regions where deaths were underestimated 
by the model. This might be due to the simple approach used to 
model care homes and the uncertainty in the actual number of care 
home deaths as shown in the discrepancy between confirmed deaths 
and deaths attributed to COVID-19. 

We found that, consistent with existing literature both in the 
United Kingdom (25) and globally (24), disease severity increased 
markedly with age. Assessment of severity is complicated by the broad 
clinical spectrum of COVID-19 (26-28), the population age struc-
ture, and surveillance systems (29, 30). Here, we provide updated 
severity estimates for England on the basis of multiple contemporary 
data streams. We estimated considerable regional heterogeneity in 
infection severity, broadly consistent in the general population and 
in care homes for IFR and IHR. London experienced the lowest 
severity even after adjusting for its younger population. The estimated 
twofold reduction over time in IFR cannot be explained solely by 
the introduction of dexamethasone, which reduces mortality among 
ICU patients (31), but rather a combination of factors including im-
provements in clinical management, greater experience in treating 
patients in ICU, and alleviation of capacity constraints (13, 32). 

Our analysis showed large regional variation in burden, especially 
in the first wave. This is likely due to the pattern of seeding and the 
timing of national lockdown relative to how advanced each region's 
epidemic was. Our counterfactual scenarios of initiating the first 
national lockdown 1 week earlier or later highlight the importance 
of early interventions to reduce overall mortality. 

Studies of COVID-19 interventions have found that the effectiveness 
of NPIs depends critically on the local context and when restrictions 
are implemented relative to how large the epidemic has grown. Across 
multiple countries, a combination of NPIs was necessary to limit 
SARS-CoV-2 transmission, with studies finding curfews, lockdowns, 
and restricting social gatherings (33, 34) or school closures and limits 
on internal movement being the most effective in reducing trans-
mission (35). Our finding that only national lockdown measures 
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consistently reduced the Rreff below 1 is in agreement with other 
U.K.-based studies (36, 37). 

At the midpoint of the second lockdown, we estimated a higher 
Rreff of 0.88 (95% CrI: 0.82 to 0.95) compared to the midpoint of the 
first lockdown in April 2020 (Rreff = 0.68, 95% CrI: 0.65 to 0.72). 
Less stringent restrictions were in place in England at this time with 
schools remaining open. Another study also estimated a smaller 
impact on transmissibility during the second national lockdown in 
England compared to during the "circuit breaker" implemented in 
Wales, which coincided with school half-term holidays (37). In ad-
dition, the emergence of the B.1.1.7 lineage, which has an estimated 
43 to 100% multiplicative transmission advantage, coinciding with 
the second lockdown may have contributed to the higher Rreff at this 
time (38, 39). 

Even assuming that immunity did not wane during the first year 
of the epidemic, our estimates of cumulative incidence over time 
strongly support the hypothesis that the epidemic decline after the 
first national lockdown was due to NPIs, with immunity playing a 
minimal role (40). Population-level immunity was insufficient to 
prevent a second wave of infection in any region, illustrated by the 
increase in reported cases and deaths that prompted the second 
national lockdown (41). Considerable uncertainties remain about 
the duration of immunity. For example, the extent and duration of 
infection-induced immunity to SARS-CoV-2 and its relationship to 
seropositivity remain unclear. Related seasonal coronaviruses induce 
immunity that wanes in 1 or 2 years (42), although antibody titers after 
SARS-CoV-1 infection appear to decay more slowly (43). Although 
including such immunity would not affect our results, this renders 
long-term predictions about the dynamics of SARS-CoV-2 challenging. 

With the authorization of the first SARS-CoV-2 vaccines in 
December 2020, we entered a new phase in the control of the 
COVID-19 pandemic. However, our estimates of population im-
munity in 2 December 2020 were low, with regional cumulative 
attack rates ranging from 7.9 to 22.5%; therefore, any vaccination 
campaign will need to achieve high coverage and a high degree of 
protection in vaccinated individuals to allow NPIs to be lifted with-
out a resurgence of transmission. Although vaccinating the most 
vulnerable age and risk groups will considerably reduce the burden 
of COVID-19, a large proportion of younger age groups may also 
need to be vaccinated to reach the immunity threshold for control. 
Our high estimates of transmission in care homes imply the need 
for high vaccine uptake there. 

Our work has a number of limitations due to simplifying assump-
tions in our analysis. First, because of the compartmental nature of 
the model, we did not explicitly model individual care homes, rather 
the regional care home sector as a whole. However, because care 
home workers may work across multiple facilities leading to within 
and between care home transmission, we do not expect the simpli-
fication to substantially affect our conclusions, but it might have 
contributed to the difficulty to reproduce the peak of transmission 
in care homes. Similarly, we did not model individual households 
or transmission within and between them. When assessing the impact 
of NPIs on transmission, we therefore captured population averages 
rather than the contribution of household and nonhousehold con-
tacts. Second, hospital-acquired infections may have contributed to 
overall transmission, especially around the peak of the epidemic, and 
to persistence of infection in England over the summer months (44, 45). 
Our model does not explicitly represent nosocomial transmission; 
therefore, such effects will be encompassed within our regional Rreff

estimates. Third, each data stream was subject to competing biases, 
which we statistically accounted for as far as possible (section S1.1). 
A key strength of our evidence synthesis approach is that we do not 
rely on any single data source, combining multiple perspectives to 
provide a robust overall picture of the epidemic. We model the epi-
demics in each NHS region in England independently without 
accounting for transmission between regions; however, most of the 
movement will be within rather than between regions. Last, limita-
tions of the data meant that we could not consider spatial hetero-
geneity within regions. 

Our analysis provides a detailed overview of transmission, 
hospitalization, and mortality patterns of COVID-19 in the first 
and second waves of the epidemic in all regions of England, one of 
the European countries worst affected by the pandemic. Integration 
of multiple data streams into a single coherent modeling framework 
enables us to disentangle transmission and severity from features of 
the surveillance system, provides robust estimates of the epidemio-
logical characteristics of the COVID-19 epidemic in England, and 
paves the way toward better understanding the contribution of 
individual surveillance data streams to the assessment of policy 
questions. As nationwide vaccination programs are rolled out, our 
results will help to inform how NPIs are applied in the future. 

MATERIALS AND METHODS 
Study design 
We developed a stochastic SEIR-like age-structured compartmental 
model of the transmission of SARS-CoV-2 in community and care 
homes in England 2020 with a detailed description of progression 
into hospital pathways after severe disease (see diagram in fig. S4). 
Model parameters were fitted to epidemiological data, including 
hospital admissions and bed occupancy, ICU prevalence, deaths in 
the community/hospitals/care homes, pillar-2 PCR testing data, REal-
time Assessment of Community Transmission (REACT) commu-
nity surveys, and blood donor serological data (see the graph of the 
functional relationships linking model outputs, data streams, and 
parameters in fig. S5). Parameters of the model were estimated, and 
the posterior distributions of the inferred model parameters were 
used to compute the epidemiological outcomes relevant to the anal-
ysis and to run the counterfactual scenarios. 

Statistical analysis 
We first analyzed a line list of 17,702 patients requiring hospitalization 
from the CHESS. Using a progression model fitted with Markov chain 
Monte Carlo (MCMC), we derived age-stratified estimates of hospi-
tal progression parameters (see details in the Supplementary Mate-
rials and data files support_progression.csv and support_severity. 
csv). These parameter estimates were then used as priors in the 
larger compartmental transmission model to infer population-level 
estimates of severity alongside the rest of the parameters from the 
model. Bayesian estimation of the parameters of our models was 
performed using particle MCMC for each of the seven NHS regions 
independently (more details are provided in the Supplementary 
Materials). 

Effective reproduction numbers were estimated from the eigenvalues 
of the next-generation matrix derived from the posterior distribu-
tions of the estimated model parameters. An additional analysis using 
the EpiEstim R package (46) was carried out to test the robustness 
of this approach (see the Supplementary Materials). 
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