Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand

Neil M Ferguson, Daniel Laydon, Gemma Nedjati-Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, Zulma Cucunubá, Gina Cuomo-Dannenburg, Amy Dighe, Ilaria Dorigatti, Han Fu, Katy Gaythorpe, Will Green, Arran Hamlet, Wes Hinsley, Lucy C Okell, Sabine van Elsland, Hayley Thompson, Robert Verity, Erik Volz, Haowei Wang, Yuanrong Wang, Patrick GT Walker, Caroline Walters, Peter Winskill, Charles Whittaker, Christl A Donnelly, Steven Riley, Azra C Ghani.

On behalf of the Imperial College COVID-19 Response Team

WHO Collaborating Centre for Infectious Disease Modelling MRC Centre for Global Infectious Disease Analysis Abdul Latif Jameel Institute for Disease and Emergency Analytics Imperial College London

Correspondence: neil.ferguson@imperial.ac.uk

Summary

The global impact of COVID-19 has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 H1N1 influenza pandemic. Here we present the results of epidemiological modelling which has informed policymaking in the UK and other countries in recent weeks. In the absence of a COVID-19 vaccine, we assess the potential role of a number of public health measures — so-called non-pharmaceutical interventions (NPIs) — aimed at reducing contact rates in the population and thereby reducing transmission of the virus. In the results presented here, we apply a previously published microsimulation model to two countries: the UK (Great Britain specifically) and the US. We conclude that the effectiveness of any one intervention in isolation is likely to be limited, requiring multiple interventions to be combined to have a substantial impact on transmission.

Two fundamental strategies are possible: (a) mitigation, which focuses on slowing but not necessarily stopping epidemic spread – reducing peak healthcare demand while protecting those most at risk of severe disease from infection, and (b) suppression, which aims to reverse epidemic growth, reducing case numbers to low levels and maintaining that situation indefinitely. Each policy has major challenges. We find that that optimal mitigation policies (combining home isolation of suspect cases, home quarantine of those living in the same household as suspect cases, and social distancing of the elderly and others at most risk of severe disease) might reduce peak healthcare demand by 2/3 and deaths by half. However, the resulting mitigated epidemic would still likely result in hundreds of thousands of deaths and health systems (most notably intensive care units) being overwhelmed many times over. For countries able to achieve it, this leaves suppression as the preferred policy option.

We show that in the UK and US context, suppression will minimally require a combination of social distancing of the entire population, home isolation of cases and household quarantine of their family members. This may need to be supplemented by school and university closures, though it should be recognised that such closures may have negative impacts on health systems due to increased

DOI: https://doi.org/10.25561/77482 Page **1** of **20**

absenteeism. The major challenge of suppression is that this type of intensive intervention package or something equivalently effective at reducing transmission - will need to be maintained until a vaccine becomes available (potentially 18 months or more) - given that we predict that transmission will quickly rebound if interventions are relaxed. We show that intermittent social distancing triggered by trends in disease surveillance - may allow interventions to be relaxed temporarily in relative short time windows, but measures will need to be reintroduced if or when case numbers rebound. Last, while experience in China and now South Korea show that suppression is possible in the short term, it remains to be seen whether it is possible long-term, and whether the social and economic costs of the interventions adopted thus far can be reduced.

SUGGESTED CITATION

Neil M Ferguson, Daniel Laydon, Gemma Nedjati-Gilani et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College London (16-03-2020), doi: https://doi.org/10.25561/77482.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives BY NO NO 4.0 International License.

DOI: https://doi.org/10.25561/77482

school closure is to further amplify the breaking of social contacts between households, and thus supress transmission. However, school closure is predicted to be insufficient to mitigate (never mind supress) an epidemic in isolation; this contrasts with the situation in seasonal influenza epidemics, where children are the key drivers of transmission due to adults having higher immunity levels^{17,18}.

The optimal timing of interventions differs between suppression and mitigation strategies, as well as depending on the definition of optimal. However, for mitigation, the majority of the effect of such a strategy can be achieved by targeting interventions in a three-month window around the peak of the epidemic. For suppression, early action is important, and interventions need to be in place well before healthcare capacity is overwhelmed. Given the most systematic surveillance occurs in the hospital context, the typical delay from infection to hospitalisation means there is a 2- to 3-week lag between interventions being introduced and the impact being seen in hospitalised case numbers, depending on whether all hospital admissions are tested or only those entering critical care units. In the GB context, this means acting before COVID-19 admissions to ICUs exceed 200 per week.

Perhaps our most significant conclusion is that mitigation is unlikely to be feasible without emergency surge capacity limits of the UK and US healthcare systems being exceeded many times over. In the most effective mitigation strategy examined, which leads to a single, relatively short epidemic (case isolation, household quarantine and social distancing of the elderly), the surge limits for both general ward and ICU beds would be exceeded by at least 8-fold under the more optimistic scenario for critical care requirements that we examined. In addition, even if all patients were able to be treated, we predict there would still be in the order of 250,000 deaths in GB, and 1.1-1.2 million in the US.

In the UK, this conclusion has only been reached in the last few days, with the refinement of estimates of likely ICU demand due to COVID-19 based on experience in Italy and the UK (previous planning estimates assumed half the demand now estimated) and with the NHS providing increasing certainty around the limits of hospital surge capacity.

We therefore conclude that epidemic suppression is the only viable strategy at the current time. The social and economic effects of the measures which are needed to achieve this policy goal will be profound. Many countries have adopted such measures already, but even those countries at an earlier stage of their epidemic (such as the UK) will need to do so imminently.

Our analysis informs the evaluation of both the nature of the measures required to suppress COVID-19 and the likely duration that these measures will need to be in place. Results in this paper have informed policymaking in the UK and other countries in the last weeks. However, we emphasise that is not at all certain that suppression will succeed long term; no public health intervention with such disruptive effects on society has been previously attempted for such a long duration of time. How populations and societies will respond remains unclear.

Funding

This work was supported by Centre funding from the UK Medical Research Council under a concordat with the UK Department for International Development, the NIHR Health Protection Research Unit in Modelling Methodology and Community Jameel.

DOI: https://doi.org/10.25561/77482 Page **16** of **20**